Some Domain Decomposition Methods for Indefinite Elliptic Problems on Unstructured Meshes
نویسنده
چکیده
In this paper, we analyze some domain decomposition methods for inde nite elliptic problems on unstructured meshes. Our theory requires no assumption on the shape of subdomains. They can have arbitrary shape. Unlike the usual domain decomposition, the coarse and ne triangulations need not be nested and quasi-uniform. Furthermore, the nodes of substructures are not necessary to be the coarse grids. This general setting in the domain decomposition makes us easier to deal with complicated geometry domain, discontinuous coe cients and boundary layers. Moreover, it becomes easier to balance the work load of each processor in a parallel computer system since we have more exibility in the choice of the number of the coarse grids. We will show that the domain decomposition methods for inde nite problems on the unstructured meshes remain optimal convergence rate when the coarse grid size and subdomain diameters are small enough.
منابع مشابه
The Vertex Space Domain Decomposition Method for Elliptic Problems with Discontinuous Coefficient on Unstructured Meshes
In this paper, we discuss the vertex space domain decomposition method (VSDDM) for solving the algebraic system of equations which arise from the discretization of symmetric and positive de nite elliptic boundary value problems via nite element methods on general unstructured meshes. Our theory does not require that the subdomains are shape regular and coarse grid is nested to the ne grid. Furt...
متن کاملIterations for the Airfoil Mesh. Multiplicative Schwarz
Overlap Level of Regular Dual graph (no. elements) coarse grid coarsening coarsening 0 None 56 56 0 4 21 22 0 3 15 12 1 None 16 16 1 4 10 10 1 3 7 7 2 None 14 14 2 4 8 8 2 3 5 5 Table 2 Multigrid iterations for the Airfoil mesh Regular coarsening Dual graph coarsening MG Levels Nodes Dir. B. Overlapping schwarz methods on unstructured meshes using non-matching coarse grids. Domain decomposition...
متن کاملA Domain Decomposition Preconditioner for a Parallel Finite Element Solver on Distributed Unstructured Grids
We consider a number of practical issues associated with the parallel distributed memory solution of elliptic partial diierential equations using unstructured meshes in two dimensions. The rst part of the paper describes a parallel mesh generation algorithm which is designed both for eeciency and to produce a well-partitioned, distributed mesh, suitable for the eecient parallel solution of an e...
متن کاملDomain Decomposition and Multigrid Algorithms for Elliptic Problems on Unstructured Meshes
Multigrid and domain decomposition methods have proven to be versatile methods for the iterative solution of linear and nonlinear systems of equations arising from the discretization of partial differential equations. The efficiency of these methods derives from the use of a grid hierarchy. In some applications to problems on unstructured grids, however, no natural multilevel structure of the g...
متن کاملNumerische Mathematik Manuscript-nr. Overlapping Schwarz Methods on Unstructured Meshes Using Non-matching Coarse Grids
We consider two level overlapping Schwarz domain decomposition methods for solving the nite element problems that arise from discretizations of elliptic problems on general unstructured meshes in two and three dimensions. Standard nite element interpolation from the coarse to the ne grid may be used. Our theory requires no assumption on the substructures that constitute the whole domain, so the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007